vesnat.ru страница 1страница 2 ... страница 4страница 5
скачать файл
Ответы на теоретические вопросы

  1. Информация в природе, обществе и технике

  2. Кодирование информации с помощью знаковых систем.

  3. Знаковые системы.

  4. Кодирование информации.

  5. Количество информации как мера уменьшения неопределенности знаний.

  6. Алфавитный подход к определению количества информации.

  7. Устройство компьютера. Процессор и системная плата

  8. Устройства ввода информации

  9. Устройства вывода информации

  10. Оперативная память и долговременная память

  11. Графический интерфейс операционных систем и приложений

  12. Операционная система

  13. Прикладное программное обеспечение

  14. Файлы и файловая система

  15. Компьютерные вирусы и антивирусные программы

  16. Кодирование текстовой информации

  17. Представление числовой информации с помощью систем счисления

  18. Перевод чисел в позиционных системах счисления

  19. Арифметические операции в позиционных системах счисления

  20. Основные параметры электронных таблиц

  21. Основные типы и форматы данных в электронных таблицах

  22. Относительные, абсолютные и смешанные ссылки

  23. Встроенные функции в электронных таблицах

  24. Основные параметры диаграмм

  25. Построение диаграмм с использованием Мастера диаграмм

1. Информация в природе, обществе и технике



Информация в неживой природе

В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос — порядок». Один из основных законов классической физики утверждает, что замкнутые системы, в которых отсутствует обмен веществом и энергией с окружающей средой, стремятся с течением времени перейти из менее вероятного упорядоченного состояния в наиболее вероятное хаотическое состояние.

Например, если в одну половину замкнутого сосуда поместить газ, то через некоторое время в результате хаотического движения молекулы газа равномерно заполнят весь сосуд. Произойдет переход из менее вероятного упорядоченного состояния в более вероятное хаотическое состояние, и информация, которая является мерой упорядоченности системы, в этом случае уменьшится.

В соответствии с такой точкой зрения физики в конце XIX века предсказывали, что нашу Вселенную ждет «тепловая смерть», т. е. молекулы и атомы со временем равномерно распределятся в пространстве и какие-либо изменения и развитие прекратятся.

Однако современная наука установила, что некоторые законы классической физики, справедливые для макротел, нельзя применять для микро- и мегамира. Согласно современным научным представлениям, наша Вселенная является динамически развивающейся системой, в которой постоянно происходят процессы усложнения структуры.

Таким образом, с одной стороны, в неживой природе в замкнутых системах идут процессы в направлении от порядка к хаосу (в них информация уменьшается). С другой стороны, в процессе эволюции Вселенной в микро- и мегамире возникают объекты со все более сложной структурой и, следовательно, информация, являющаяся мерой упорядоченности элементов системы, возрастает.

Согласно теории Большого взрыва, Вселенная образовалась около 15 миллиардов лет назад в результате взрыва «первоматерии». В первые мгновения материя существовала фактически в форме энергии, а затем на протяжении долей секунды начало образовываться вещество в форме элементарных частиц (электронов, протонов, нейтронов и др.).

В следующий миллион лет основные события развивались в микромире. Из разлетающихся во все стороны элементарных частиц образовывались атомы, т. е. из хаоса возникали системы с более сложной структурой. Сначала возникли атомы самых легких химических элементов (водорода и гелия), а затем и более тяжелых элементов.

В мегамире в течение последующих миллиардов лет под действием сил гравитационного притяжения из хаоса гигантских облаков пыли и газа формировались сложные структуры галактики. Наша Солнечная система, в которую входит планета Земля, образовалась около 5 миллиардов лет назад и вместе с сотнями миллионов других звезд образует нашу галактику Млечный Путь.

На поверхности планет стали происходить химические реакции, в результате которых из атомов образовывались более сложные системы — молекулы веществ. В том числе молекула воды, которая состоит из двух атомов водорода и одного атома кислорода.

  

Информация в живой природе

Информация как мера увеличения сложности живых организмов. Примерно 3,5 миллиарда лет назад на Земле возникла жизнь. С тех пор идет саморазвитие, эволюция живой природы, т. е. повышение сложности и разнообразия живых организмов. Живые системы (одноклеточные, растения и животные) являются открытыми системами, так как потребляют из окружающей среды вещество и энергию и выбрасывают в нее продукты жизнедеятельности также в виде вещества и энергии.

Живые системы в процессе развития способны повышать сложность своей структуры, т. е. увеличивать информацию, понимаемую как меру упорядоченности элементов системы. Так, растения в процессе фотосинтеза потребляют энергию солнечного излучения и строят сложные органические молекулы из «простых» неорганических молекул.

Животные подхватывают эстафету увеличения сложности живых систем, поедают растения и используют растительные органические молекулы в качестве строительного материала при создании еще более сложных молекул.

Биологи образно говорят, что "живое питается информацией", создавай, накапливая и активно используя информацию.

Информационные сигналы. Нормальное функционирование живого организма невозможно без получения и использования информации об окружающе среде. Целесообразное поведение живых организмов строиться на основе получения информационных сигналов. Информационные сигналы могут иметь различную физическую или химическую природу. Это звук, свет, запах и др.

Даже простейшие одноклеточные организмы (например, амеба) постоянно воспринимают и используют информацию, например, о температуре и химическом составе среды для выбора наиболее благоприятных условий существования.

Выживание популяций животных во многом базируется на обмене информационными сигналами между членами одной популяции. Информационный сигнал может быть выражен в различных формах: позах, звуках, запахах и даже вспышках света (ими обмениваются светлячки и некоторые глубоководные рыбы).

Генетическая информация. Одной из основных функций живых систем является размножение, т. е. создание организмов данного вида. Воспроизведение себе подобных обеспечивается наличием в каждой клетке организма генетической информации, которая передается по наследству.

Генетическая информация представляет собой набор генов, каждый из которых «отвечает» за определенные особенности строения и функционирования организма. При этом «дети» не являются точными копиями своих родителей, так как каждый организм обладает уникальным набором генов, которые определяет различия в строении и функциональных возможностях.



Человек и информация

Примерно 40 тысяч лет назад в процессе эволюции живой природы появился Человек разумный (перевод с латинского «Homo Sapiens»). Человек существует в «море» информации, он постоянно получает информацию из окружающего мира с помощью органов чувств, хранит ее в своей памяти, анализирует с помощью мышления и обменивается информацией с другими людьми.

Способы восприятия информации. Целесообразное поведение человека, так же как и животных, строится на основе анализа информационных сигналов, которые он получает с помощью органов чувств. Чувствительные нервные окончания органов чувств (рецепторы) воспринимают воздействие (например, на глазном дне колбочки и палочки реагируют на воздействие световых лучей) и передают его по нервной системе в мозг.

Способы восприятия информации живыми организмами зависят от наличия у них тех или иных органов чувств. Человек может использовать пять различных способов восприятия информации с помощью пяти органов чувств:



  • зрения — с помощью глаз информация воспринимается в форме зрительных образов;

  • слуха — с помощью ушей и органов слуха воспринимаются звуки (речь, музыка, шум и т. д.);

  • обоняния — с помощью специальных рецепторов носа воспринимаются запахи;

  • вкуса — рецепторы языка позволяют различить сладкое, соленое, кислое и горькое;

  • осязания — рецепторы кожи (особенно кончиков пальцев) позволяют получить информацию о температуре объектов и типе их поверхности (гладкая, шершавая и т. д.).

Наибольшее количество информации (около 90%) человек получает с помощью зрения, около 9% — с помощью слуха и только 1% с помощью других органов чувств (обоняния, осязания и вкуса).

Полученную информацию в форме зрительных, слуховых и других образов человек хранит в памяти, обрабатывает с помощью мышления и использует для управления своим поведением и достижения поставленных целей. Например, при переходе дороги человек видит сигналы светофора и движущегося автомобиля анализирует полученную информацию и выбирает безопасный вариант перехода.

Информация в форме сообщений. Человек живет в обществе. В процессе общения с другими людьми человек передает и получает информацию в форме сообщений. На заре человеческой истории для передачи информации использовался язык жестов, затем появилась устная речь. В настоящее время обмен сообщениями между людьми производится с помощью сотен так называемых естественных языков (русского, английского и т. д.).

Для того чтобы информация была понятна, язык должен быть известен всем людям, участвующим в общении. Чем большее количество языков вы знаете, том шире круг вашего общения.

Согласно библейской легенде о вавилонском столпотворении, строившаяся в древнем городе Вавилоне башня не была закончена и разрушилась, так как сотни строителей говорили на различных языках и не понимали друг друга.

Информация в форме знаний. С самого начала человеческой истории возникла потребность накопления информации для ее передачи во времени из поколения в поколение и передачи в пространстве на большие расстояния. Процесс накопления информации начался с изобретения в IV тысячелетии до нашей эры письменности и первых носителей информации (шумерских глиняных табличек и древнеегипетских папирусов).

Для того чтобы человек мог правильно ориентироваться в окружающем мире, информация должна быть полной и точной. Задача получения полной и точной информации о природе, обществе и технике стоит перед наукой. Процесс систематического научного познания окружающего мира, в котором информация рассматривается как знания, начался с середины XV века после изобретения книгопечатания.

Для долговременного хранения знаний (передачи из поколения в поколение) и распространения их в обществе (тиражирования) необходимы носители информации.

Материальная природа носителей информации может быть различной. До настоящего времени в качестве основного носителя информации используется бумага. В прошлом веке широкое распространение для хранения графической информации получила фото- и кинопленка. В настоящее время для хранения информации широко используются также магнитные носители (аудио- и видеопленки, гибкие и жесткие диски) и оптические носители (CD- и DVD-диски).

Средства массовой информации. Широко известен термин «средства массовой информации» (газеты, радио, телевидение), которые доводят информацию до каждого члена общества. Такая информация должна быть достоверной, актуальной и полезной. Недостоверная информация вводит членов общества в заблуждение и может быть причиной возникновения социальных потрясений. Неактуальная информация не имеет применения в настоящий момент времени, и поэтому никто, кроме историков, не читает прошлогодних газет. Бесполезная информация создает информационный шум, который затрудняет восприятие полезной информации



Информационные процессы в технике

 

Системы управления техническими устройствами. Функционирование систем управления техническими устройствами связано с процессами приема, хранения, обработки и передачи информации. Системы управления могут выполнять различные функции. Например, такие системы могут поддерживать определенное состояние технической системы.



Так системы автоматической терморегуляции холодильника, утюга и кондиционера обеспечивают поддержание заданной температуры. В системе терморегуляции управляющее устройство получает информацию от температурных датчиков, обрабатывает ее (сравнивает реальную температуру с заданной) и передает команды нагревательному элементу (усилить или уменьшить нагрев).

 Системы управления встроены практически во всю современную бытовую технику, станки с числовым программным управлением, транспортные средства и пр.

Системы управления могут обеспечивать функционирование технической системы по заданной программе. Например, системы программного управления обеспечивают выбор режимов стирки в стиральной машине, записи в видеомагнитофоне, обработки детали на станке с программным управлением.

В некоторых случаях главную роль в процессе управления выполняет человек, в других управление осуществляет встроенный в техническое устройство микропроцессор или подключенный компьютер. Например, управление полетом самолета может осуществлять летчик или в режиме автопилота бортовой компьютер. Они получают информацию о режиме полета от датчиков (скорости, высоты и пр.), обрабатывают ее и передают команды на исполнительные механизмы (закрылки, клапаны, регулирующие работу двигателей, и пр.), изменяющие режим полета.

Первый микропроцессор Intel 4004, «дедушка» современных процессоров, был разработан в 1971 году специально для использования в автоматизированных системах управления. Процессор включал 2300 электронных переключателей, обладал памятью объемом 640 байтов и мог выполнять 100 .тысяч операций в секунду (рис. 1.7).

Роботы. Роботами называются автоматические устройства, предназначенные для осуществления научных, производственных и других работ. Роботы могут иметь различные внешний вид и размеры, но все они выполняют те или иные действия на основании заложенной в них программы обработки информации.

Промышленные роботы обычно заменяют человека в тех отраслях производства, где требуется проведение утомительных и однообразных работ (например, конвейерная сборка автомобилей и электронных устройств), опасных технических работ (например, работа с радиоактивными материалами), а также работ, где присутствие человека физически невозможно (например, автоматические космические и глубоководные аппараты).

Большой интерес всегда вызывают роботы, подобные человеку или животным по внешнему виду и действиям. Они могут ходить, преодолевать препятствия, реагировать на внешние раздражители и даже разговаривать.
2. Кодирование информации с помощью знаковых систем. Знаки: форма и значение

С древних времен знаки используются человеком для долговременного хранения информации и ее передачи на большие расстояния.

Форма знаков. В соответствии со способом восприятия знаки можно разделить на зрительные, слуховые, осязательные, обонятельные и вкусовые, причем в человеческом общении используются знаки первых трех типов.

К зрительным знакам, воспринимаемым с помощью зрения, относятся буквы и цифры, которые используются в письменной речи, знаки химических элементов, музыкальные ноты, дорожные знаки и т. д.

К слуховым знакам, воспринимаемым с помощью слуха, относятся звуки, которые используются в устной речи, а также звуковые сигналы, которые производятся с помощью звонка, колокола, свистка, гудка, сирены и т. д.

Для слепых разработана азбука Брайля, которая использует осязательный способ восприятия текстовой информации.

В коммуникации многих видов животных особую роль играют обонятельные знаки. Например, медведи и другие дикие животные помечают место обитания клочьями шерсти, сохраняющей запах, чтобы отпугнуть чужака и показать, что данная территория уже занята.

Для долговременного хранения знаки записываются на носители информации.

Для передачи информации на большие расстояния используются знаки в форме сигналов. Всем известны световые сигналы светофора, звуковые сигналы школьного звонка оповещают о начале или конце урока, электрические сигналы передают информацию по телефонным и компьютерным сетям, электромагнитные волны передают сигналы радио и телевидения.

Значение знаков. Знаки отображают объекты окружающего мира или понятия, т. е. имеют определенное значение (смысл).

Знаки различаются по способу связи между их формой и значением. Иконические знаки позволяют догадаться об их смысле, так как они имеют форму, похожую на отображаемый объект. Примером таких знаков являются значки на Рабочем столе операционной системы компьютера, например значок Мой компьютер.

Символами называются знаки, для которых связь между формой и значением устанавливается по общепринятому соглашению. Примером таких знаков являются символы химических элементов, отображающие атомы химических веществ (табл. 1.1).

Если неизвестно соглашение о связи формы и значения символов, то ничего нельзя сказать о смысле информации, записанной такими знаками. Существуют найденные археологами и до сих пор нерасшифрованные тексты на древних языках, так как неизвестно значение знаков, которыми они записаны.

image012

Таблица 1.1. Иконические знаки и символы

В современном мире широко применяется шифрование, которое использует секретный ключ в качестве соглашения о связи формы символов с их значениями. Если секретный ключ неизвестен, то содержание передаваемого текста понять невозможно.

Один и тот же символ может иметь различное значение в разных знаковых системах. Например, знак «О» используется в качестве:


  • буквы «О» в русском алфавите;

  • буквы «О» [ои] в английском алфавите;

  • цифры 0 в системах счисления;

    • символа химического элемента «О» (кислорода) в таблице Д. И. Менделеева.


3. Знаковые системы

Знаковые системы являются наборами знаков определенного типа. С некоторыми знаковыми системами вы хорошо знакомы и постоянно ими пользуетесь (языки и системы счисления), с другими познакомитесь в этом пункте.



Каждая знаковая система строится на основе определенного алфавита (набора знаков) и правил выполнения операций над знаками.

Естественные языки. Человек широко использует для представления информации знаковые системы, которые называются языками. Естественные языки начали формироваться еще в древнейшие времена в целях обеспечения обмена информацией между людьми. В настоящее время существуют сотни естественных языков (русский, английский, китайский и др.).

В устной речи, которая используется как средство коммуникации при непосредственном общении людей, в качестве знаков языка используются различные звуки (фонемы).

В основе письменной речи лежит алфавит, т. е. набор знаков (букв), которые человек различает по их начертанию. В большинстве современных языков буквы соответствуют определенным звукам устной речи. Алфавит русского языка называется кириллицей и содержит 33 знака, английский язык использует латиницу и содержит 26 знаков.

На основе алфавита по правилам грамматики образуются основные объекты языка — слова. Правила, согласно которым из слов данного языка строятся предложения, называются синтаксисом. Необходимо отметить, что в естественных языках грамматика и синтаксис языка формулируются с помощью большого количества правил, из которых существуют исключения, так как такие правила складывались исторически.

Формальные языки. В процессе развития науки были разработаны формальные языки (системы счисления, алгебра, языки программирования и др.), основное отличие которых от естественных языков состоит в существовании строгих правил грамматики и синтаксиса.

Например, десятичную систему счисления можно рассматривать как формальный язык, имеющий алфавит (цифры) и позволяющий не только именовать и записывать объекты (числа), но и выполнять над ними арифметические операции по строго определенным правилам.

Существуют формальные языки, в которых в качестве знаков используют не буквы и цифры, а другие символы, например музыкальные ноты, изображения элементов электрических или логических схем, дорожные знаки, точки и тире (код азбуки Морзе).

Физическая реализация знаков в естественных и формальных языках может быть различной. Например, текст и числа могут быть напечатаны на бумаге, высвечены на экране монитора компьютера, записаны на магнитном или оптическом диске.

Генетический алфавит. Генетический алфавит является «азбукой», на которой строится единая система хранения и передачи наследственной информации живыми организмами.

Как слова в языках образуются из букв, так и гены состоят из знаков генетического алфавита. В процессе эволюции от простейших организмов до человека количество генов постоянно возрастало, так как было необходимо закодировать все более сложное строение и функциональные возможности живых организмов.

Генетическая информация хранится в клетках живых организмов в специальных молекулах. Эти молекулы состоят из двух длинных скрученных друг с другом в спираль цепей, построенных из четырех различных молекулярных фрагментов. Фрагменты образуют генетический алфавит и обычно обозначаются латинскими прописными буквами {A, G, С, Т}.

 Двоичная знаковая система. В процессах хранения, обработки и передачи информации в компьютере используется двоичная знаковая система, алфавит которой состоит всего из двух знаков {0, 1}. Физически знаки реализуются в форме электрических импульсов (нет импульса — 0, есть импульс — 1), а также состояний ячеек оперативной памяти и участков поверхностей носителей информации (одно состояние — 0, другое состояние — 1).

 Именно двоичная знаковая система используется в компьютере, так как существующие технические устройства могут надежно сохранять и распознавать только два различных состояния (знака).

В 60-е годы XX века в СССР учеными Московского государственного университета была разработана и запущена в производство ЭВМ «Сетунь» (всего было произведено 50 экземпляров) (рис. 1.10). «Сетунь» использовала троичное кодирование информации и, соответственно, состояла из устройств, способных находиться в одном из трех возможных состояний.
4. Кодирование информации

В процессах восприятия, передачи и хранения информации живыми организмами, человеком и техническими устройствами происходит ее кодирование.

Код. Длина кода. В процессе представления информации с помощью знаковой системы производится ее кодирование. Результатом кодирования является последовательность символов данной знаковой системы, то есть информационный код. Примерами кодов являются последовательности букв в тексте, цифр в числе, генетический код, двоичный компьютерный код и т. д.

Код состоит из определенного количества знаков (например, текстовое сообщение состоит из определенного количества букв, число — из определенного количества цифр и т. д.), т. е. имеет определенную длину.


скачать файл


следующая страница >>
Смотрите также:
1. Информация в природе, обществе и технике Информация в неживой природе
728.71kb.
Программа кружка «Проблемы экологии села Александровского»
49.71kb.
Тема: По страницам Красной книги Цели
115.13kb.
Экологический пионерский сбор «Мы хотим, чтоб от народа не страдала природа» 2012г
99.66kb.
Вода в природе. Физические свойства воды. Получение чистой воды. Образовательные
64.85kb.
Справочная информация о Чувашской Республике Общая информация
304.08kb.
Наиболее стремительными темпами в последние годы развиваются Internet-технологии, которые могут быть эффективно использованы в качестве инструмента электронного обучения и образовательных коммуникаций [4, 5]
44.11kb.
Возникновение общественного интереса к дикой природе важнейшая черта современного стандарта жизни
509.44kb.
1. Основные понятия: данные, информация, знания Мир неотвратимо идет к информационному обществу
240.51kb.
Общая информация о международной студенческой олимпиаде «Banks Battle»
62.78kb.
Грузинский блицкриг 08. 08. 08 Результат геноцид осетин!
52.69kb.
Информация о месте работы населения
18.75kb.